

11<sup>th</sup> Symposium on Diseases in Asian Aquaculture 23-26 August 2022 Kuching, Sarawak, Malaysia

An overview of viral diseases Asian sea bass (*Lates calcarifer*) and the research highlights

Fish Health Section

Dr. Saengchan Senapin



Asian Fisheries Society

OUNDER

SOCIE

1984

#### Scientific name Lates calcarifer (Bloch 1790)

#### **Common names**

- Asian sea bass
- Barramundi
- Barramundi perch
- Giant sea perch

#### **Attractive species for aquaculture**

- Tasty, nutritious meat
- Fast growth rate, large size, tolerance to a range of environmental conditions
- High demand in the domestic and export markets

**Production** >110,000 MT in 2020

## Asian sea bass culture







### Asian sea bass can be cultured in

open
 semi-closed
 closed systems

freshwater
 brackish
 marine settings

each with specific disease challenges!!

### List of viral pathogens in Asian sea bass

| •         | •                                                      |                                | •                                 |                                                                                     |
|-----------|--------------------------------------------------------|--------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|
|           | Virus name                                             | Family/Genus                   | First report in<br>Asian sea bass | Subsequent<br>reports                                                               |
|           | Infectious spleen and<br>kidney necrosis virus (ISKNV) |                                | Vietnam, 2017                     | Thailand, China                                                                     |
|           | Red sea bream iridovirus<br>(RSIV)                     |                                | India, 2020                       | -                                                                                   |
| DNA virus | Turbot reddish body iridovirus<br>(TRBIV)              | Iridoviridae/ Megalocytivirus  | Taiwan, 2020                      | -                                                                                   |
|           | Scale drop disease virus<br>(SDDV)                     |                                | Singapore, 2012                   | Malaysia, Indonesia, Thailand                                                       |
|           | Lymphocystivirus                                       | Iridoviridae/Lymphocystivirus  | Singapore, 1983                   | Thailand 1987, Australia 1990                                                       |
|           | Lates calcarifer herpesvirus<br>(LCHV)                 | Alloherpesviridae              | Vietnam, Singapore, 2017          | Thailand                                                                            |
| RNA virus | Nervous necrosis virus (NNV)                           | Nodaviridae/Nodavirus          | Malaysia, Australia, 1987         | Indonesia, Singapore, Taiwan,<br>China, Israel, Philippines, Tahiti,<br>India, Iran |
|           | Lates calcarifer Birnavirus<br>(LCBV)                  | Birnaviridae/ Blosnavirus-like | Singapore, 2019                   | -                                                                                   |

# Iridoviridae family

bony fish, reptiles and amphibians

insects and crustaceans

Subfamily: *Alphairidovirinae* 

Genus: Lymphocystivirus

Genus: Megalocytivirus

Genus: Ranavirus

Subfamily: *betairidovirinae* 

Genus: Chloriridivirus

Genus: Daphniairidovirus

Genus: *Decapodiridovirus* 

Genus: Iridovirus

All members in the *Iridoviridae* family are proposed to be called "iridovirids" (rather than iridoviruses) to avoid confusion to the genus *Iridovirus* (Chinchar et al, 2017) Infectious spleen and kidney necrosis disease (ISKND)

| Causative agent   | <ul> <li>Infectious spleen and kidney necrosis virus (ISKNV) or called <i>Megalocytivirus</i> ISKNV</li> <li>Enveloped icosahedral viruses (130-150 nm in diameter) with a linear double-stranded DNA genome of 111 kb</li> </ul> |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinical sign     | darkening, pale gills, ascites, enlarged spleen (splenomegaly)                                                                                                                                                                    |
| Host              | > 150 fish species of both marine and freshwater fish                                                                                                                                                                             |
| Mortality         | High mortality up to 85% of Asian sea bas                                                                                                                                                                                         |
| Susceptible stage | fingerling, juveniles, and grow-out of Asia sea bas                                                                                                                                                                               |
| Transmission      | horizontal & vertical                                                                                                                                                                                                             |
| Distribution      | <ul> <li>Widely distributed</li> <li>Cases in Asian sea bass = Vietnam, Thailand, China</li> </ul>                                                                                                                                |
| Histopathology    | Basophilic hypertrophied cells (megalocytes) in spleen, kidney, liver, and gills                                                                                                                                                  |
| Diagnosis         | PCRs, qPCR, isothermal amplification, immunological based techniques                                                                                                                                                              |
| Genotyping        | MCP gene                                                                                                                                                                                                                          |
| Cell culture      | Grunt fin-1 (GF-1) =Vacuolization<br>Mandarin fish fry cells (MFF-1) => Rounding cells & detachment                                                                                                                               |
| Prevention        | Biosecurity + general managements                                                                                                                                                                                                 |





Affected sea bass farms in Vietnam in 2012–2014

#### 🎄 Loss **\$4**35,000/ year

- A commercial oil-based vaccine (RSIV) showed inadequate protection
- Based on MCP gene, the virus was identified as Megalocytivirus ISKNV genotype II



Hyaline degeneration in kidney tubules





# First report of ISKNV in China



Zhu et al (2021) Aquaculture 534:736326





40-50% cumulative mortality of grownout Asian sea bass in Thailand



Basophilic inclusion bodies (megalocytosis) in kidney and gills







# Red sea bream iridovirus (RSIV)



Fig. 1. A Diseased Asian seabass; B Infected Asian seabass showing pale gills C Enlarged spleen of diseased Asian seabass.



- 80-90% mortality of grow-out open-caged Asian sea bass in the brackish water environment in India.
- The affected fish were RSIV positive using DNA polymerase PCR and sequence analysis.
- The RSIV isolated from India is phylogenetically more closely related to Korean isolate of RSIV.
- **Histopathogical examinations were investigated.**
- A The challenge test with tissue homogenate reproduced 100% mortality in the healthy sea bass.

#### **Report to OIE.**

First case report of RSIV in Asian sea bass



Girisha et al, 2020 Aquaculture 520: 734712

# Turbot reddish body iridovirus (TRBIV)



First case report of TRBIV in Asian sea bass



Tsai et al, 2020. Viruses 12: 681–699.

Fingerlings of L. calcarifer imported to Taiwan die up to 90%.

- Loss of appetite, lethargy, deep body color, petechiae of gills, severe anemia and an enlarged abdomen.
- Enlarged spleens and kidneys as well as reddish livers.
- Molecular detection revealed infection of TRBIV genotype II.
- Semi-nested PCR was developed to improve detection sensitivity.





# Scale drop syndrome

SDDV (Scale drop disease virus)
 -> Scale drop disease
 LCHV (Lates calcarifer herpesvirus)
 -> SDD-like symptom
 A unique strain of Vibrio harveyi
 -> scale drop and muscle necrosis

# Scale drop disease (SDD)

| •        | Causative<br>agent   | <ul> <li>Scale drop disease virus (SDDV)</li> <li>Enveloped hexagonal virions (100-180 nm) with double-stranded DNA genome of 131 kb (135 ORFs)</li> </ul>                         |
|----------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •        | Clinical sign        | Asian sea bass: Scale loss, some with "red belly"                                                                                                                                  |
| •        | Host                 | Asian sea bass, Yellowfin seabream ( <i>Acanthopagrus latus</i> ),<br>European chub ( <i>Squalius cephalus</i> ), Tilapia ( <i>Oreochromis</i> spp)                                |
|          | Mortality            | Asian sea bass: 40-50% in marine, brackish, and freshwater culture                                                                                                                 |
| <b>.</b> | Susceptible<br>stage | Juveniles, subadut, adult                                                                                                                                                          |
|          | Transmission         | Horizontal-likely, Vertical??                                                                                                                                                      |
| <b>3</b> | Distribution         | Singapore, Malaysia, Indonesia, Thailand, China, USA, UK<br>(European chub iridovirus)                                                                                             |
|          | Histopathology       | Basophilic hypertrophied cells (megalocytes)<br>Multifocal necrosis, pyknosis and karyorrhexis<br>Dermal inflammation and severe infiltration of lymphocytic<br>inflammatory cells |
| <u>.</u> | Diagnosis            | PCRs, qPCR, isothermal amplification                                                                                                                                               |
|          | Genotyping           | Major capsid protein (MCP) and adenosine triphosphatase (ATPase) genes                                                                                                             |
| •        | Cell culture         | Seabass kidney (SK) SK21 cells<br>Grunt fin (GF-1) cells<br>MFF-1 cell                                                                                                             |
| •        | Prevention           | Biosecurity + general managements                                                                                                                                                  |
|          |                      |                                                                                                                                                                                    |

# Scale drop disease (SDD)

Gibson-Kueh et al. 2012 J Fish Dis 35:19-27 de Groof et al. 2015 Plos Pathog 11(8): e1005074



2012: Scale Drop Syndrome (SDS) - suspected viral etiology
2015: Scale Drop Disease (SDD)
a novel Megalocytivirus (~68% genome identity to others)
killed 40-50% fish population (natural) 13-100% (challenge test)
confirmed in Singapore, Malaysia, and Indonesia
may be circulated in SEA since 1992, misdiagnosed as Tenacibaculosis





BEI, binary ethyleneimine

### SDDV in Thailand



Senapin et al. 2019 J Fish Dis. 42, 119-127. Kayansamruaj, et al 2020 J Fish Dis. 43,1287-1298



Gross signs and histopathology



- farmers call it "scale drop disease" or "red belly disease"
- & observed since 2014
- A affect adult and subadult fish
- A mortality ~40%
- & samples 2016-2018



| Received: 10 February 2020 Revised: 17 July 2020 Accepted: 20 July 2020 |            |                      |
|-------------------------------------------------------------------------|------------|----------------------|
| DOI: 10.1111/jfd.13240                                                  |            | Check for<br>updates |
| ORIGINAL ARTICLE                                                        | Journal of | Y                    |

Draft genome sequence of *scale drop disease virus* (SDDV) retrieved from metagenomic investigation of infected barramundi, *Lates calcarifer* (Bloch, 1790)

Pattanapon Kayansamruaj<sup>1,2</sup>  $\bigcirc |$  Chayanit Soontara<sup>1</sup> | Ha T. Dong<sup>3,4</sup>  $\odot |$  Kornsunee Phiwsaiya<sup>4,5</sup> | Saengchan Senapin<sup>4,5</sup>  $\odot$ 

# SDDV in Malaysia





Gross signs and histopathology

| 100                                                                                                | Scale Drop Disease Virus (SDDV) SB3 2019 Malaysia [MT012817]<br>Scale Drop Disease Virus (SDDV) 2017 Thailand [MH152404]<br>Scale Drop Disease Virus (SDDV) 2018 Thailand [MH152405]<br>Scale Drop Disease Virus (SDDV) 2016 Thailand [MH152403]<br>Scale Drop Disease Virus (SDDV) Singapore [KB139659] | SDDV            |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Turbot iridovirus (TRIV<br>97<br>Red seabream iridoviru<br>97 Rock bream iridovirus                | <ul> <li>/) China [AY590687]</li> <li>us (RSIV) Japan [AB080362]</li> <li>(RIV) South Korea [KT031401]</li> </ul>                                                                                                                                                                                        |                 |
| <sup>46</sup><br>Infectious spleen and k<br><sup>96</sup><br><sup>99</sup> Infectious spleen and k | tidney necrosis virus (ISKNV) Vietnam [KY440040]<br>tidney necrosis virus (ISKNV) Thailand [LC378578]<br>tidney necrosis virus (ISKNV) China [MK757444]                                                                                                                                                  | Megalocityvirus |



Fig. 3. Agarose gel electrophoresis showing PCR amplicons for (A) *Flavobacterium columnare*-specific PCR on bacterial colonies and (B) scale drop disease virus (SDDV)-specific semi-nested PCR on liver samples.

SDDV in reshwater cultured Asian sea bass co-infected with *Flavobacterium* 

Kerddee et al 2020 DAO 140:119-128



Charoenwai et al (2019) J Virol Methods. 268: 37-41 Non-lethal detection of SDDV from Asian sea bass and its potential carriers

| Fish status          | Samples | +ve/ total |
|----------------------|---------|------------|
|                      | Blood   | 12/12      |
| Clinically sick fish | Mucus   | 7/7        |
|                      | Fin     | 11/15      |
|                      | Blood   | 4/4        |
| Clinically healthy   | Mucus   | 4/4        |
| A 100                | Finance | 4/5        |

Lernanthopus sp. & Diplectanum sp.



|   |     |     | Parasites from<br>diseased fish |         |         | Parasites from normal looking fis |   |        | om<br>ing fish |        |
|---|-----|-----|---------------------------------|---------|---------|-----------------------------------|---|--------|----------------|--------|
| М | -ve | +ve | 1<br>++                         | 2<br>++ | 3<br>++ | 4<br>++                           | 5 | 6<br>+ | 7<br>+         | 8<br>+ |
|   |     |     |                                 |         |         | -                                 |   | -      | inun           | -      |

Molecular diagnosis of

Charoenwai et al (2021) J Fish Dis. 44: 461– 467



| qPCR: <b>1 c</b> | οργ/μL |
|------------------|--------|
|------------------|--------|

|      |         |                                    | Positive sample/Number of<br>tested samples |                  |  |
|------|---------|------------------------------------|---------------------------------------------|------------------|--|
| Year | Farm    | Fish health status                 | Semi-nested                                 | qPCR             |  |
|      |         |                                    | PCR*                                        |                  |  |
| 2016 | Farm 1  | Sick fish with scale drop symptoms | 18/18                                       | 18/18            |  |
|      | Farm 2  | Unknown diseased fish              | 6/6                                         | 6/6              |  |
| 2017 | Farm 3  | Sick fish with scale drop symptoms | 5/5                                         | 5/5              |  |
|      | Farm 4  | Clinically healthy fish            | 0/12                                        | 8/12             |  |
|      | Farm 5  | Clinically healthy fish            | 0/80                                        | 1/5              |  |
|      | Farm 6  | Clinically healthy fish            | 0/10                                        | 0/5              |  |
|      | Farm 6  | Clinically healthy fish            | 0/10                                        | 5/5              |  |
|      | Farm 8  | Clinically healthy fish            | 0/10                                        | 1/5"             |  |
|      | Farm 9  | Clinically healthy fish            | 0/10                                        | 5/5ª             |  |
|      | Farm 10 | Clinically healthy fish            | 0/5                                         | 5/5 <sup>#</sup> |  |
|      | Farm 11 | Clinically healthy fish            | 0/10                                        | 2/5 <sup>#</sup> |  |
|      | Farm 12 | Clinically healthy fish            | 0/13                                        | 3/5              |  |
| 2018 | Farm 13 | Sick fish with scale drop symptoms | 2/2                                         | 2/2              |  |
| 2019 | Farm 14 | Sick fish with scale drop symptoms | Not done                                    | 3/3              |  |
|      |         | Total                              | 31/191<br>(16,2%)                           | 64/86<br>(74,4%) |  |

### Molecular diagnosis of

#### Sriisan et al, 2020 Dis. Aquat. Org. 139:131-137

### Isothermal amplification for detection of SDDV

#### 40-100 copies/reaction



Sirintip Dangtip", Jantana Kampeera", Rapheephat Suvannakad", Pakapreud Khumwan", Wansadaj Jaroenram", Molruedee Sonthi<sup>b</sup>, Saengchan Senapin<sup>c,d</sup>, Wansika Kiatpathomchai<sup>a,\*</sup>

 Received: 7 January 2021
 Revised: 30 April 2021
 Accepted: 4 May 2021

 DOI: 10.1111/jtd.13448
 Image: Comparison of Com

RESEARCH ARTICLE

Journal of Fish Diseases

Development of cross-priming amplification (CPA) combined with colorimetric and lateral flow dipstick visualization for scale drop disease virus (SDDV) detection

Terawut Prasitporn<sup>1,2</sup> | Saengchan Senapin<sup>3</sup> | Akapon Vaniksampanna<sup>4</sup> | Siwaporn Longyant<sup>1,2</sup> | Parin Chaivisuthangkura<sup>1,2</sup>

Received: 5 August 2021 Revised: 18 September 2021 Accepted: 20 September 2021
DOI: 10.1111/07d.13541

RESEARCH ARTICLE

Journal of Fish Diseases

CRISPR-based platform for rapid, sensitive and fielddeployable detection of scale drop disease virus in Asian sea bass (*Lates calcarifer*)

Thanwarat Sukonta<sup>1</sup> | Saengchan Senapin<sup>1,2,3</sup> | Watcharachai Meemetta<sup>3</sup> | Thawatchai Chaijarasphong<sup>1,3</sup>



- Diseased fish with SDD-like symptom
- Singapore and Vietnam, 2015
- Mortality 30-70% (natural)
- 77% mortality in co-habitation or i.p. challenges
- Genome 130 kb
- Called Lates calcarifer herpes virus (LCHV)

#### Development of qPCR detection method for LCHV



### LCHV, Lates calcarifer herpesvirus





ORIGINAL RESEARCH published: 18 June 2021 doi: 10.3389/fgene.2021.666897



Scale Drop Disease Virus (SDDV) and Lates calcarifer Herpes Virus (LCHV) Coinfection Downregulate Immune-Relevant Pathways and Cause Splenic and Kidney Necrosis in Barramundi Under Commercial Farming Conditions

Jose A. Domingos<sup>1,2\*</sup>, Xueyan Shen<sup>1</sup>, Celestine Terence<sup>1</sup>, Saengchan Senapin<sup>3,4</sup>, Ha Thanh Dong<sup>3,5</sup>, Marie R. Tan<sup>8</sup>, Susan Gibson-Kueh<sup>1</sup> and Dean R. Jerry<sup>1,2</sup> Naturally diseased fish

Experimentally diseased fish



Caused by a pathogenic *V. harveyi*  A CAR AND

Experimentally diseased fish

In the second

Naturally diseased fish



#### Is toxin involved ?

### Scale Drop and Muscle Necrosis

### Disease (SDMND)

Dong et al. Aquaculture (2017) 473:89-96

# **Viral Nervous** Necrosis (VNN) or Viral encephalopathy and retinopathy (VER) disease



Viral Nervous<br/>Necrosis (VNN)<br/>or Viral<br/>encephalopathy<br/>and retinopathy<br/>(VER) disease

|          | Causative agent   | <ul> <li>Betanodavirus, Nervous necrosis virus (NNV)</li> <li>Non-enveloped icosahedral virus (appx 25 nm in diameter) with<br/>two positive-strand RNA segments of 3.1 and 1.4 kb</li> </ul> |
|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P        | Clinical sign     | Darkening of the skin & erratic swimming. Some with pop-eye                                                                                                                                   |
|          | Host              | > 60 fish species, mainly marine fish                                                                                                                                                         |
| <b>P</b> | Mortality         | High mortality up to 100%                                                                                                                                                                     |
|          | Susceptible stage | All stages, mainly larvae and juveniles                                                                                                                                                       |
|          | Transmission      | Horizontal & vertical                                                                                                                                                                         |
|          | Distribution      | <ul> <li>Widely distributed</li> <li>Cases in Asia sea bass = Malaysia, Australia, Indonesia, Singapore,<br/>Taiwan, China, Israel, Philippines, Tahiti, India, Iran</li> </ul>               |
|          | Histopathology    | Vacuolation in brain and retina                                                                                                                                                               |
| Â        | Diagnosis         | RT-PCRs, qPCR, isothermal amplification, Immunological based techniques                                                                                                                       |
| <b>.</b> | Genotyping        | RNA 2 segment encoding a viral capsid protein                                                                                                                                                 |
|          | Cell culture      | Striped snakehead cell line, SSN-1<br>E-11, a clone of SSN-1 & others                                                                                                                         |
|          | Prevention        | Biosecurity + improvement of host immunity + water management + reduce stress                                                                                                                 |

### Viral Nervous Necrosis (VNN) disease



Figure 2 Barramundi larva with betanodavirus infection. Note severe vacuolation of the brain and retina (H & E, bar = 100  $\mu$ m).



Figure 3 Transmission electronmicrograph of betanodavirus particles in the brain of a barramundi larva (bar = 250 nm).



Figure 6 Fish cell line, barramundi/sea bass: (a) normal, noninfected cells (bar = 100  $\mu$ m); (b) cells showing CPE caused by greasy grouper nervous necrosis virus (bar = 100  $\mu$ m).

Munday et al Journal of Fish Diseases 2002, 25, 127-142



RGNNV

Ziarati et al. Current Microbiology (2020) 77:3919–3926 Only NNY genotype RGNNY has been documented from Asian sea bass (out of the four major NNY genotypes)



### Lates calcarifer Birnavirus 76 (LCBV)

### LCBV, a novel RNA virus in Asian sea bass



Chen et al. Virology Journal (2019) 16:71



# Comments

\* There are a growing number of viruses (and other pathogens) affecting Asian sea bass (and other species).

\*\* No treatment for viral diseases in aquaculture, so 'Prevention is better than cure'.

Xaccination and selective breeding are envisioned as future disease management strategies for aquacultured Asian sea bass.

\* Promote systematic and regular surveillance for known and undiagnosed pathogens.

\* Utilize regionally available Internet resources for actively sharing and updating information.

**Basic sciences should be continuously and financially supported.** 

\* Promote aquaculture as a career option for the younger generation.



11<sup>th</sup> Symposium on Diseases in Asian Aquaculture 23-26 August 2022 Kuching, Sarawak, Malaysia

Thank you for your attention



Asian Fisheries Society

Fish Health Section