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ABSTRACT

Red seabream iridovirus (RSIV) is the causative agent of an infectious disease in marine
fish that is listed to be notifiable to the Office International des Epizooties. To better
understand the molecular mechanisms of its pathogenesis, we explored the expression
of almost all the putative RSIV open reading frames (ORFs) over the time-course of
an in vivo infection in red seabream using DNA microarrays. Expression of about 45%
of total RSIV ORFs was detected at about 5 days post-infection (d.p.i.). Almost all the
ORFs (97% to 99%) were expressed at their maximum levels during the period 7-9 days
post-infection (dpi). The expression levels and the number of expressed ORFs started to
decrease at 10 dpi. Our results suggest that the pathogenesis of RSIV infection began at
around day 5, and continued with high levels of viral multiplication until viral clearance,
apparently by the host antiviral immune defenses, starting from around 10 dpi. RSIV
ORFs were preferentially expressed in the spleen, which may be the primary target of

RSIV. The spleen may thus be a susceptible organ for diagnosis of iridoviral disease in
fish.
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INTRODUCTION

Systemic iridoviral diseases have been observed in more than 100 freshwater and marine
fish species worldwide with high mortalities ranging from 30% to 100% (Hyatt et al.,
2000; Iwamoto et al., 2002; Qin et al., 2003; Tidona et al., 1998). One of these infectious
diseases is red seabream iridoviral disease (RSIVD) that has been recorded in at least 31
marine fish species (Kawakami and Nakajima, 2002). The causative pathogen was first
isolated from diseased red seabream (Pagrus major) in Japan in 1992 and hence named
red seabream iridovirus (RSIV) (Inouye et al., 1992). Because of geographical range and
occurrence in fish involved in international trade, the RSIVD is notified to be quarantined
by the Office International des Epizooties (OIE).

RSIV-infected fish showed diseased symptoms from 5 days of infection, and mortality
commenced at day 6 and increased up to 90% at day 9 (Oshima et al., 1998). The infected
fishes displayed enlarged cells in spleen, kidney, liver and gills (Inouye et al., 1992).
Although some rapid, sensitive diagnostic methods, and control strategies have been
developed (Caipang et al., 2004; Caipang et al., 2003; Caipang et al., 2006; Jeong et
al., 2004; Kurita et al., 1998; Nakajima et al., 1995; Oshima et al., 1998; Oshima et
al., 1996), the molecular mechanisms of its pathogenesis are poorly understood. Recently,
the whole RSIV genomic sequence of about 112 kbp has been determined (Kurita ef al.,
2002), providing an important basis for studies on its pathogenicity at the molecular level
both in vitro and in vivo. In vitro expression analyses of individual viral genes at various
time points during the viral life cycle can provide a better understanding of the viral
DNA replication and gene expression strategies, while in vivo genome-wide transcription
analyses can provide possible clues for the pathogenesis of the virus, and provide insights
into the complex host-virus interactions (DeFilippis et al., 2003; Martinez-Guzman et al.,
2003; Ye et al., 2001).

The potential use of DNA microarray technology in virology has been comprehensively
discussed in numerous reviews (Clewley, 2004; Cummings and Relman, 2000; DeFilippis
et al.,2003; Ye et al., 2001). This technology is well suited for genome-wide transcription
studies, and has been applied to explore gene expression patterns of viruses by both
cell culture and animal model studies (see Lua ef al.,, 2005 and references therein).
In a previous study (Lua et al., 2005), we used DNA microarrays to monitor the in
vitro transcription program of RSIV over the time-course of an infection. Individual
RSIV ORFs were characterized at the transcriptional level and were also classified into
temporal kinetic classes by their dependence on de novo protein synthesis and viral DNA
replication. The gene expression of RSIV occurred in a temporal kinetic cascade with 3
stages, which includes Immediate-Early (IE), Early (E) and Late (L) transcripts, following
a common feature of the family Iridoviridae. IE genes are expressed immediately after
primary infection and encode transcription factors associated with trans-activations. E
genes are normally expressed later and include enzymes associated with DNA replication.
L genes are expressed after the onset of viral DNA replication and encode mainly structural
proteins of viral particles. In the present study, we aimed to have a better understanding
of the RSIV pathogenic mechanisms at the molecular level by monitoring the viral
transcription profiles over the time-course of an in vivo infection in a fish model through
the use of RSIV DNA microarrays.
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MATERIALS AND METHODS

Virus stock

RSIV was obtained from a spleen homogenate of RSIV-infected red seabream, and
propagated in Grunt fin (GF) cells (Clem et al., 1961) as previously described (Lua et al.,
2005). The virus titer was determined using the 50% tissue culture infective dose (TCIDy)
method (Reed and Muench, 1938). The viral stock was stored in 1 ml aliquots at -80°C
until further use.

In vivo virus infection and time-course sampling

Red seabream juveniles were experimentally infected with 150 pul of the RSIV inoculum
(5.0 X 10° TCID,/ml) and held in tanks supplied with running seawater at 25°C. Control
fishes were injected with the same volume of phosphate buffered saline. Thirty fishes were
sacrificed immediately after the RSIV infection for use as reference (control) samples.
These fish are referred to as 0 day post-infection (dpi) fish. Five fish were randomly
selected from the experimental population on each of 2, 3, 5, 7, 9, 10, and 14 dpi for use
as target (test) samples. The spleens and kidneys were removed from the collected fish and
stored in RNAlater (Ambion, USA) according to the manufacturer’s protocol.

Construction of RSIV DNA microarray chip

The DNA microarray chips containing almost all the putative RSIV open reading frames
(ORFs) (92 ORFs) were constructed exactly as described by Lua ef al. (2005). Briefly,
specific primer sets were designed to amplify approximately 300-1500bp fragments of
each ORF using viral genome as a template. All PCR products showing a single band of
the appropriate size by gel electrophoresis were purified, and reconstituted in TE buffer at
a final concentration of about 500 pg/ml for spotting onto the glass slides. Each ORF was
spotted in duplicate at different parts of the slides to assess the consistency of hybridization
and facilitate comparison during the analysis. Piscine P-actin genes from Japanese
flounder, red seabream, and Japanese flounder natural embryo (HINAE) cells (Kasai and
Yoshimizu, 2001) were included as internal controls to normalize the microarray data. In
addition, distilled water was also used as a negative control.

Microarray hybridization experiment

Total RNA was extracted from the collected spleens with TRIzol (Invitrogen, USA)
and subjected to DNase I treatment (Promega, USA) according to the manufacturer’s
protocols. For each time-course target sample and control sample, cDNAs were generated
from 50 pg total RNA using an RSIV antisense-strand specific primer mixture. The
cDNAs were first labeled with aminoallyl-dUTP using a LabelStar™Array Kit (Qiagen,
USA) and purified with a QIAquick PCR Purification Kit (Qiagen, USA) following the
manufacturer’s recommendations. The target and control aminoallyl-cDNAs were then
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coupled with Cy5- and Cy3-monofunctional dyes (Amersham Biosciences, England),
respectively, and purified with MinElute™ Spin columns (Qiagen, USA) according to
manufacturer’s instructions.

At each indicated time point, the Cy5/Cy3-dUTP labeled ¢cDNAs were combined and
hybridized to the microarray chips for 16-18h at 42°C. The chips were rinsed several times

and finally dried following the DNA microarray standard method (Bowtell and Sambrook,
2002) as modified by Lua et al. (2005).

Microarray statistical data analysis

The microarray chips were scanned using a GenePix 4000B array scanner and images were
analyzed by GenePix Pro 4.0 array analysis software (Axon Instruments, Inc., USA). The
Cy5 and Cy3 signal intensities of viral genes were normalized to the signal intensities of
the spotted PB-actin gene. The background signal was subtracted from the median signal
intensity to obtain the absolute viral gene expression. Only genes exhibiting signal intensity
at least twofold greater than the signal intensities of the reference samples collected at 0
d.p.i. were used for statistical analysis. The significance of differences between viral
infected samples and reference samples was determined with a paired #-test on replicated
spots for each gene. P values of less than 0.05 were considered significant.

The microarray data was also reported as the calibrated expression ratio, which was the
ratio of the fluorescence intensity of a RSIV transcript in infected spleens compared to that
of the B-actin transcript (Lua et al., 2005; Tsai et al., 2004). The expression ratio data was
imported into the cluster program 3.0 in conjunction with an average linkage hierarchical
clustering algorithm using Euclidian distance as the similarity metric. After clustering,
the results were visualized in a tree structure by using a tree view program (Eisen ef al.,
1998).

Reverse Transcription (RT) - PCR

RT-PCR assay was used to confirm the microarray data and to investigate a susceptible
organ of RSIV infection. Several RSIV ORFs, with different expression patterns as
determined by the microarray results, were selected from the three temporal kinetic
classes (IE, E and L genes). Twenty ul of cDNA was synthesized from 5 pg total RNA
derived from spleens and kidneys by using M-MLV Reverse Transcriptase (Invitrogen,
USA) according to the manufacturer’s protocols. RT-PCR was carried out in a 30 pl
reaction volume containing 1 pl cDNA using Taq polymerase. The same specific primers
for each RSIV ORF used in the amplification of microarray probes were also employed
here. Cycling parameters consisted of an initial denaturation at 95°C for 2 min, followed
by 23 and 27 cycles of denaturation at 95°C for 30 sec, annealing at 55°C for 30 sec and
elongation at 72°C for 1 min, and a final elongation step at 72°C for 5 min. A 23 cycle
PCR was used to determine differences in expression of RSIV transcripts between spleen
and kidney at the high level spread stage of the infection (7-9 dpi) while a 27 cycle PCR
was performed to show differences in expression at the early stage (5 dpi) and late stage
(10-14 dpi) of the infection.
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RESULTS

In vivo RSIV transcription program

The microarray analysis showed that no viral transcripts were detected in spleens at 2 and
3 dpi (data not shown), but viral ORFs showed significant changes in expression from
5 d.p.i. onwards. At 5 days after infection, 44 viral ORFs were significantly expressed,
accounting for 44.6% (p<0.05) of total RSIV ORFs. Almost all (about 97% to about 99%,
p<0.001) of viral ORFs were significantly expressed during the period 7-9 dpi (Table 1).
As shown by the cluster analysis (Figure 1), the expression levels of viral ORFs were
at their maximal levels during this period, showing high levels of viral multiplication.
However, the numbers and the expression levels of expressed ORFs started to decrease at
10 dpi. The expression of only 25% (p<0.05) of the ORFs was detected at 14 dpi (Table
1, Figure 1).

Confirmation of microarray results by RT-PCR

Six RSIV ORFs were selected for confirming the microarray results by RT-PCR (Fig. 2).
These ORFs included IE transcripts 097R and 591R, E transcripts 092R and 324R, and
L transcripts 291L and MCP (Major Capsid Protein). The B-actin transcript was used as
an internal control. As expected, no viral band was amplified at day 0, day 2 or day 3
of the infection. From 5 d.p.i. onwards, the selected ORFs were observed with different
expression levels over the time-course of the infection. Therefore, the RT-PCR results
(Figure 2) confirmed the microarray data showing the same expression patterns of selected
ORFs. In addition, the B-actin transcript levels, as determined by RT-PCR, were similar
between samples, confirming that the B-actin gene can be used to normalize the viral gene
expression results across the microarrays.

Identification of a susceptible organ of RSIV infection

Four ORFs were selected for identifying a susceptible organ of RSIV infection by RT-
PCR (Figure 3). These ORFs consisted of IE transcript 097R, E transcript 407R, and L
transcripts 291L and MCP. Differences in expression of these ORFs between spleens and
kidneys during the spreading stage of the virus (7-9 dpi) were detected after both 23 and
27 PCR cycles (Figures 3A and 3B), while the differences at the early stage (5 dpi) and
the late stage (10-14 dpi) of the infection were detected after 27 PCR cycles (Figure 3B).
The expression levels of the selected ORFs were all higher in the spleen than in the kidney.
These findings indicate that the spleen may be a susceptible organ of RSIV infection.
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Figure 1. Hierarchical cluster analysis of in vivo RSIV transcription program. Calibrated expression
ratios for each ORF were categorized by an average linkage hierarchical clustering program. Each
row represents the expression profile of a single ORF, and each column indicates time points after
infection. The normalized expression levels across all the time points are color-coded. Green boxes
indicate expression ratios lower than the mean. Red boxes indicate expression ratios greater than the
mean. Black boxes indicate an intermediate level of expression and gray boxes indicate missing or
not detected. The magnitude of up-regulation from the mean is shown by differing intensities of red,
with deep red showing lower expression and bright red showing the highest levels of expression.
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Figure 2. RT-PCR analysis of RSIV gene expression in viral-infected spleen. cDNAs were
synthesized from 5 pg total RNA taken from the same samples used for the microarray experiments.
One pl cDNA was used for 30 pl RT-PCR reaction with cycling conditions as follows: an initial
denaturation at 95°C for 2 min, followed by 27 cycles of denaturation of 95°C for 30 sec, annealing
at 55°C for 30 sec and elongation at 72°C for 1 min, and a final elongation step at 72°C for 5 min.
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Figure 3. Difference in expression of RSIV genes between spleen (S) and kidney (K). cDNAs were
synthesized from 5 pg total RNA derived from spleens and kidneys. One pl cDNA was used for 30
pl RT-PCR reaction with cycling conditions as follows: an initial denaturation at 95°C for 2 min,
followed by 23 and 27 cycles of denaturation of 95°C for 30 sec, annealing at 55°C for 30 sec and
elongation at 72°C for 1 min, and a final elongation step at 72°C for 5 min. A 23 cycle PCR was
used to determine differences in expression of RSIV transcripts between spleen and kidney at the
high level spread stage of the infection while a 27 cycle PCR was performed to show differences in
expression at the early and late stages of the infection.
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DISCUSSION

Outbreaks of system iridoviral diseases associated with high mortality (30-100%) have
been reported in cultured freshwater and marine fish species in many parts of the world
including Africa, America, Asia, and Europe (Chao ef al., 2004; Iwamoto et al., 2002; Qin
et al., 2003). Among them, an iridoviral disease caused by RSIV has been considered as
a serious, important disease because of its wide geographical distribution and host range.
The disease is documented not only in Japan, but also in Korea, Taiwan and Indonesia
(Chao et al., 2002; Chou et al., 1998; Do et al., 2004; Inouye et al., 1992; Jeong et al.,
2003; Mahardika et al., 2004; Wang et al., 2003). In Japan, the disease has been recorded
in at least 31 marine fish including 3 main cultured marine fish, red seabream, Japanese
flounder and yellow tail (Kawakami and Nakajima, 2002). Due to the devastating effects
of this pathogen to marine aquaculture, an understanding of RSIV pathogenic mechanism,
at the molecular level, is necessary and may provide possible clues for disease control and
diagnosis strategies.

The concurrent development of DNA microarray technology and the complete sequencing
of a number of viral genomes are providing the opportunity to speed our understanding
of various aspects of both sides of the host-virus interaction at the molecular level. In
fact, the DNA microarray technology has been successfully applied in virological studies
in both cell culture systems and experimental animal models. In our previous study (Lua
et al., 2005), RSIV DNA microarrays were used for rapid analysis of the RSIV gene
transcriptional profile over the time-course of an in vitro infection in HINAE cells and for
grouping genes into temporal kinetic classes, providing a global picture of transcription
and kinetics of RSIV genes during the replication cycle. In the present study, the same
RSIV DNA microarray was used to characterize the viral gene expression profiles over the
time-course of an in vivo infection in red seabream, providing a better understanding of the
pathogenic mechanisms of RSIV infection at the transcription level.

The time-course experiments have allowed us to monitor the expression of each RSIV ORF
through an in vivo infection. The timing of viral transcripts that we observed (beginning
at 5 dpi and peaking at 7-9 dpi) is similar to what has been observed in previous studies
(Nakajima et al., 1995; Oshima et al., 1998). In an immunoassay of RSIV-infected red
seabream (Nakajima et al., 1995), the virus was not detected in the spleen at 1 or 3 dpi, was
moderately detected at 5 dpi and was strongly detected at 7 dpi. Using a PCR assay, PCR
products corresponding to a portion of the ribonucleotide reductase small subunit gene
were not amplified from RSIV-infected red seabream at 1 and 2 dpi but were amplified
starting at 5 dpi (Oshima et al., 1998). Similar results were observed in Taiwan grouper
iridovirus (TGIV) infection, a piscine iridovirus classified into the same group with RSIV,
in which the viral particles were determined in some internal organs of groupers at 4-5 days
after intramuscular infection (Chao et al., 2002). In Singapore grouper iridovirus (SGIV)
infection, viral antigens were detected in virus-infected fish blood at 3 dpi by a Western
blot analysis (Qin et al., 2002). Taken together, our results suggest that the pathogenic
mechanism of RSIV is probably similar to that found in other piscine iridoviruses, such as
TGIV and SGIV. Although viral particles were detected at slightly different times in the
above studies, piscine iridoviruses seem to begin to spread at around 4-5 dpi.
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Our finding that the in vivo expression profiles of RSIV gradually declined in both the
numbers and the expression levels after 10 dpi. (Table 1, Fig. 1) indicates that the virus
was being gradually cleared by host antiviral immune defenses. Similarly, Caipang et al.
(2003) showed with real-time PCR that RSIV was cleared from both the vaccinated and
unvaccinated red seabream after viral challenge, and Chao et al. (2004) showed with H
& E staining and in situ hybridization that the number of basophilic enlarged cells (virus-
containing cells) gradually decreased in groupers 7 days after TGIV infection. Chao et al.
(2004) attributed the viral clearance to either an improved host defense or to depletion of
susceptible cell types.

Differences in expression of selected RSIV ORFs between spleens and kidneys at high
spread stage of the infection could be observed with only 23 PCR cycles (Figure 3A).
Although differences in expression at the early and late stages of the infection were not
detectable after 23 cycles, they were detectable after 27 cycles (Figure 3B). Overall, the
expression levels of the selected ORFs were all higher in the spleen than in the kidney.
Among the selected ORFs, the MCP gene was found to be expressed at significant higher
levels in the spleen than in the kidney over the time-course of infection. MCP gene
contains highly conserved domains and codes for the major structural component of viral
particles (Schnitzler and Darai, 1993; Tidona et al., 1998; Williams, 1996). The MCP gene
has been used to detect and measure RSIV as well as other iridovirues (Caipang et al.,
2003; Tidona et al., 1998). Thus, our RT-PCR results confirmed, at the transcription level,
the hypothesis that the spleen is a susceptible organ for RSIV infection in particular and for
iridoviral infections in fish in general. The spleen also appears to be where TGIV begins
replicating (Chao et al., 2004), and thus has been suggested to be used for early screening
of TGIV. Our results support this conclusion.

CONCLUSION

In conclusion, the present study is the continued analysis of RSIV gene expression patterns
in vivo to complete transcriptional profiles of RSIV both in cell culture and fish model
systems. The results demonstrate that RSIV DNA microarrays can be used to study RSIV
infection in a fish model at the molecular level. This study describes the first use of DNA
microarrays to explore gene expression patterns of a marine fish-pathogenic virus in fish.
Such studies should impart a greater understanding of pathogenesis of RSIV infection at
the molecular level, contribution to the thorough knowledge of RSIV infection and further
provide a possible clue for selection of a susceptible organ for detection of iridoviral
infections in aquaculture.
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